Flink SQL 知其所以然:Over 聚合操作

时间:2025-11-04 19:53:44来源:极客码头作者:域名

架构

大家好,聚合我是操作老羊,今天我们来学习 Flink SQL 中的聚合· Over 聚合操作。

Flink SQL 知其所以然:Over 聚合操作

Over 聚合定义(支持 Batch\Streaming):可以理解为是操作一种特殊的滑动窗口聚合函数。

那这里我们拿 Over 聚合​ 与 窗口聚合 做一个对比,聚合其之间的操作最大不同之处在于:

窗口聚合:不在 group by 中的字段,不能直接在 select 中拿到

Over 聚合:能够保留原始字段

注意:其实在生产环境中,聚合Over 聚合的操作使用场景还是比较少的。在 Hive 中也有相同的聚合聚合,但是操作小伙伴萌可以想想你在离线数仓经常使用嘛?

应用场景:计算最近一段滑动窗口的聚合结果数据。IT技术网际案例:查询每个产品最近一小时订单的聚合金额总和:

复制

SELECT order_id, order_time, amount, SUM(amount) OVER ( PARTITION BY

product

ORDER BY

order_time

RANGE BETWEEN INTERVAL 1 HOUR PRECEDING AND

CURRENT ROW

) AS

one_hour_prod_amount_sum

FROM Orders1.2.3.4.5.6.7.8.

Over 聚合的语法总结如下:

复制SELECT agg_func(agg_col) OVER ( [PARTITION BY col1[, col2, ...]] ORDER BY

time_col

range_definition),

...

FROM ...1.2.3.4.5.6.7.

其中:

ORDER BY:必须是时间戳列(事件时间、处理时间)PARTITION BY:标识了聚合窗口的操作聚合粒度,如上述案例是聚合按照 product 进行聚合range_definition:这个标识聚合窗口的聚合数据范围,在 Flink 中有两种指定数据范围的操作方式。第一种为按照行数聚合​,聚合第二种为按照时间区间聚合。如下案例所示:

a. 时间区间聚合:

按照时间区间聚合就是时间区间的一个滑动窗口,比如下面案例 1 小时的区间,最新输出的一条数据的 sum 聚合结果就是高防服务器最近一小时数据的 amount 之和。

复制CREATE TABLE source_table ( order_id BIGINT, product BIGINT, amount BIGINT, order_time as cast(CURRENT_TIMESTAMP as TIMESTAMP(3)), WATERMARK FOR order_time AS order_time - INTERVAL 0.001

SECOND

) WITH ( connector = datagen, rows-per-second = 1, fields.order_id.min = 1, fields.order_id.max = 2, fields.amount.min = 1, fields.amount.max = 10, fields.product.min = 1, fields.product.max = 2);CREATE TABLE sink_table ( product BIGINT, order_time TIMESTAMP(3), amount BIGINT, one_hour_prod_amount_sum BIGINT) WITH ( connector = print);INSERT INTO

sink_table

SELECT product, order_time, amount, SUM(amount) OVER ( PARTITION BY

product

ORDER BY

order_time

-- 标识统计范围是一个 product 的最近 1 小时的数据 RANGE BETWEEN INTERVAL 1 HOUR PRECEDING AND

CURRENT ROW

) AS

one_hour_prod_amount_sum

FROM source_table1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.

结果如下:

复制+I[2, 2021-12-24T22:08:26.583, 7, 73]+I[2, 2021-12-24T22:08:27.583, 7, 80]+I[2, 2021-12-24T22:08:28.583, 4, 84]+I[2, 2021-12-24T22:08:29.584, 7, 91]+I[2, 2021-12-24T22:08:30.583, 8, 99]+I[1, 2021-12-24T22:08:31.583, 9, 138]+I[2, 2021-12-24T22:08:32.584, 6, 105]+I[1, 2021-12-24T22:08:33.584, 7, 145]1.2.3.4.5.6.7.8.

b.  行数聚合:

按照行数聚合就是数据行数的一个滑动窗口,比如下面案例,最新输出的一条数据的 sum 聚合结果就是最近 5 行数据的 amount 之和。

复制CREATE TABLE source_table ( order_id BIGINT, product BIGINT, amount BIGINT, order_time as cast(CURRENT_TIMESTAMP as TIMESTAMP(3)), WATERMARK FOR order_time AS order_time - INTERVAL 0.001

SECOND

) WITH ( connector = datagen, rows-per-second = 1, fields.order_id.min = 1, fields.order_id.max = 2, fields.amount.min = 1, fields.amount.max = 2, fields.product.min = 1, fields.product.max = 2);CREATE TABLE sink_table ( product BIGINT, order_time TIMESTAMP(3), amount BIGINT, one_hour_prod_amount_sum BIGINT) WITH ( connector = print);INSERT INTO

sink_table

SELECT product, order_time, amount, SUM(amount) OVER ( PARTITION BY

product

ORDER BY

order_time

-- 标识统计范围是一个 product 的最近 5 行数据 ROWS BETWEEN 5 PRECEDING AND

CURRENT ROW

) AS

one_hour_prod_amount_sum

FROM source_table1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.

预跑结果如下:

复制+I[2, 2021-12-24T22:18:19.147, 1, 9]+I[1, 2021-12-24T22:18:20.147, 2, 11]+I[1, 2021-12-24T22:18:21.147, 2, 12]+I[1, 2021-12-24T22:18:22.147, 2, 12]+I[1, 2021-12-24T22:18:23.148, 2, 12]+I[1, 2021-12-24T22:18:24.147, 1, 11]+I[1, 2021-12-24T22:18:25.146, 1, 10]+I[1, 2021-12-24T22:18:26.147, 1, 9]+I[2, 2021-12-24T22:18:27.145, 2, 11]+I[2, 2021-12-24T22:18:28.148, 1, 10]+I[2, 2021-12-24T22:18:29.145, 2, 10]1.2.3.4.5.6.7.8.9.10.11.

当然,如果你在一个 SELECT 中有多个聚合窗口的聚合方式,Flink SQL 支持了一种简化写法,如下案例:

复制SELECT order_id, order_time, amount, SUM(amount) OVER w AS sum_amount, AVG(amount) OVER w AS

avg_amount

FROM

Orders

-- 使用下面子句,香港云服务器定义 Over WindowWINDOW w AS ( PARTITION BY

product

ORDER BY

order_time

RANGE BETWEEN INTERVAL 1 HOUR PRECEDING AND CURRENT ROW)1.2.3.4.5.6.7.8.9.

相关内容